双马树脂基复合材料空间损伤与界面改性 陈平,于祺 著 2017年版
- 资料名称:双马树脂基复合材料空间损伤与界面改性 陈平,于祺 著 2017年版
- 英文名称:
- 文件大小:53.84 MB
- 标准类型:行业图书
- 标准语言:中文版
- 授权形式:免费
- 文件类型:PDF文档
- 下载次数:3 加入收藏
- 标签:
资料介绍
双马树脂基复合材料空间损伤与界面改性
作者:陈平,于祺 著
出版时间:2017年版
内容简介
本书共11章,主要包括两部分内容:碳纤维增强双马树脂基复合材料在空间环境下的损伤与机理、高性能纤维低温等离子体表面处理与复合材料界面调控技术。首先对碳纤维增强双马树脂基复合材料在真空热循环、质子与电子辐照环境下性能演化及其损伤机理进行了分析讨论。然后重点阐述高性能连续纤维(包括:T700碳纤维、PBO纤维和碳纤维混杂PBO纤维)经射频(ICP)和介质阻挡放电(DBD)低温等离子体改性处理前后,纤维表面状态、表面组成、表面形貌、浸润性能的变化规律以及经等离子体处理前后纤维增强双马树脂基复合材料界面结构与性能的影响关系及变化规律、复合材料界面黏结和破坏机理。后对纤维表面时效性及其对纤维增强双马树脂基复合材料界面性能的影响关系也进行了论述。 本书可供从事先进复合材料、航空航天材料科学研究、技术开发的工作人员及高等院校相关专业的师生参考。
目录
第1章绪论1
1.1树脂基复合材料的发展简史1
1.2双马树脂的研究进展3
1.2.1双马来酰亚胺的合成原理3
1.2.2双马来酰亚胺的结构与性能6
1.2.3改性双马来酰亚胺树脂及其应用6
1.3高性能纤维的结构与性能7
1.3.1碳纤维的结构与性能7
1.3.2聚对亚苯基苯并双唑纤维的结构与性能10
1.4聚合物基复合材料的界面11
1.5纤维表面改性处理方法研究进展14
1.5.1纤维表面改性方法概况14
1.5.2纤维表面等离子体改性21
1.6空间环境对碳纤维/双马树脂基复合材料性能影响的研究进展22
1.6.1空间环境因素概述22
1.6.2空间环境效应的研究进展27
参考文献31
第2章实验材料与结构性能表征方法41
2.1实验原材料及实验仪器41
2.1.1实验原材料41
2.1.2实验仪器42
2.2纤维表面等离子体处理43
2.2.1碳纤维表面处理45
2.2.2PBO纤维表面等离子体处理45
2.3复合材料的制备46
2.4空间环境模拟试验47
2.4.1真空热循环试验47
2.4.2质子辐照试验48
2.4.3电子辐照试验48
2.5结构性能表征方法49
2.5.1X射线光电子能谱分析49
2.5.2纤维的表面形貌分析49
2.5.3动态接触角分析50
2.5.4复合材料的性能测试52
2.5.5复合材料破坏形貌分析53
2.5.6傅里叶红外光谱分析53
2.5.7傅里叶变换红外衰减全反射光谱分析53
2.5.8热失重分析53
2.5.9动态力学分析54
2.5.10热膨胀分析54
2.5.11质损率测试54
2.5.12复合材料的热应力分析54
参考文献56
第3章真空热循环对碳纤维/双马树脂基复合材料性能的影响及热应力模拟58
3.1真空热循环对CF/BMI复合材料热性能的影响59
3.1.1真空热循环对CF/BMI复合材料动态力学性能的影响59
3.1.2真空热循环对CF/BMI复合材料热稳定性的影响61
3.1.3真空热循环对CF/BMI复合材料线膨胀行为的影响64
3.2真空热循环对CF/BMI复合材料质损率的影响66
3.3真空热循环对CF/BMI复合材料表面形貌和表面粗糙度的影响67
3.4真空热循环对CF/BMI复合材料力学性能的影响71
3.4.1真空热循环对CF/BMI复合材料横向拉伸强度的影响71
3.4.2真空热循环对CF/BMI复合材料弯曲强度的影响73
3.4.3真空热循环对CF/BMI复合材料层间剪切强度的影响75
3.5真空热循环过程中CF/BMI复合材料的热应力模拟76
3.5.1CF/BMI复合材料的有限元分析模型77
3.5.2CF/BMI复合材料热应力的分布规律79
3.5.3CF/BMI复合材料的潜在破坏区域分析83
3.5.4CF/BMI复合材料热应力的重新分布87
参考文献91
第4章质子辐照对碳纤维/双马树脂基复合材料性能的影响94
4.1质子辐照对CF/BMI复合材料表面性能的影响95
4.1.1质子辐照对CF/BMI复合材料表面官能团的影响95
4.1.2质子辐照对CF/BMI复合材料表面化学成分的影响98
4.1.3质子辐照对CF/BMI复合材料表面形貌和表面粗糙度的影响101
4.2质子辐照对CF/BMI复合材料热性能的影响103
4.2.1质子辐照对CF/BMI复合材料动态力学性能的影响104
4.2.2质子辐照对CF/BMI复合材料热稳定性的影响107
4.3质子辐照对CF/BMI复合材料力学性能的影响108
4.3.1质子辐照对CF/BMI复合材料弯曲强度的影响108
4.3.2质子辐照对CF/BMI复合材料层间剪切强度的影响109
4.4质子辐照对CF/BMI复合材料质损率的影响110
参考文献111
第5章电子辐照对碳纤维/双马树脂基复合材料性能的影响113
5.1电子辐照对CF/BMI复合材料表面性能的影响114
5.1.1电子辐照对CF/BMI复合材料表面化学成分的影响114
5.1.2电子辐照对CF/BMI复合材料表面官能团的影响117
5.1.3电子辐照对CF/BMI复合材料表面形貌和表面粗糙度的影响119
5.2电子辐照对CF/BMI复合材料热性能的影响120
5.2.1电子辐照对CF/BMI复合材料动态力学性能的影响120
5.2.2电子辐照对CF/BMI复合材料热稳定性的影响123
5.3电子辐照对CF/BMI复合材料力学性能的影响124
5.3.1电子辐照对CF/BMI复合材料弯曲强度的影响124
5.3.2电子辐照对CF/BMI复合材料层间剪切强度的影响125
5.4电子辐照对CF/BMI复合材料质损率的影响126
参考文献127
第6章氧气ICP等离子体表面处理对PBO/BMI复合材料界面性能的影响129
6.1氧气等离子体处理功率对复合材料ILSS的影响129
6.1.1氧气等离子体放电功率对纤维表面化学成分的影响130
6.1.2氧气等离子体处理功率对纤维表面形貌及粗糙度的影响134
6.1.3氧气等离子体处理功率对纤维表面浸润性的影响136
6.2氧气等离子体处理时间对复合材料ILSS的影响138
6.2.1氧气等离子体处理时间对纤维表面化学成分的影响139
6.2.2氧气等离子体处理时间对纤维表面形貌及粗糙度的影响142
6.2.3氧气等离子体处理时间对纤维表面浸润性的影响144
6.3氧气等离子体处理气压对复合材料ILSS的影响145
6.3.1氧气等离子体处理气压对纤维表面化学成分的影响146
6.3.2氧气等离子体处理气压对纤维表面形貌及粗糙度的影响149
6.3.3氧气等离子体处理气压对纤维表面浸润性的影响150
6.4氧气等离子体对PBO纤维表面化学改性机理探讨151
参考文献153
第7章氩气ICP等离子体表面处理对PBO/BMI复合材料界面性能的影响155
7.1氩气等离子体处理功率对PBO/BMI复合材料ILSS的影响155
7.1.1氩气等离子体处理功率对PBO纤维表面化学成分的影响156
7.1.2氩气等离子体处理功率对纤维表面形貌及粗糙度的影响160
7.1.3氩气等离子体处理功率对纤维表面浸润性的影响162
7.2氩气等离子体处理时间对PBO/BMI复合材料ILSS的影响164
7.2.1氩气等离子体处理时间对PBO纤维表面化学成分的影响165
7.2.2氩气等离子体处理时间对纤维表面形貌及粗糙度的影响168
7.2.3氩气等离子体处理时间对纤维表面浸润性的影响170
7.3氩气等离子体处理气压对PBO/BMI复合材料ILSS的影响170
7.3.1氩气等离子体处理气压对纤维表面化学成分的影响171
7.3.2氩气等离子体处理气压对纤维表面形貌及粗糙度的影响174
7.3.3氩气等离子体处理气压对纤维表面浸润性的影响176
7.4氩气等离子体对PBO纤维表面化学改性机理探讨176
参考文献178
第8章氧/氩混合气体ICP等离子体处理对PBO/BMI复合材料界面性能的影响179
8.1氧/氩混合气体等离子体的气体组分对复合材料ILSS的影响180
8.1.1氧/氩混合等离子体的气体组成对纤维表面化学成分的影响181
8.1.2氧/氩混合等离子体的气体组成对纤维表面形貌及粗糙度的影响186
8.2氧/氩混合气体等离子体处理功率对复合材料ILSS的影响188
8.2.1氧/氩混合气体等离子体处理功率对纤维表面化学成分的影响189
8.2.2氧/氩混合气体等离子体处理功率对纤维表面形貌及粗糙度的影响192
8.3氧/氩混合气体等离子体处理时间对复合材料ILSS的影响193
8.3.1氩/氧混合气体等离子体处理时间对纤维表面化学成分的影响194
8.3.2氧/氩混合气体等离子体处理时间对纤维表面形貌及粗糙度的影响197
8.4氧/氩混合气体等离子体对PBO纤维表面化学改性机理探讨198
8.5PBO/BMI复合材料层间断裂机理、耐湿热性质及等离子体改性退化现象200
8.5.1等离子体处理对复合材料层间断裂形貌的影响及界面增强机理探讨200
8.5.2等离子体处理对PBO/BMI复合材料耐湿热性能的影响205
8.5.3等离子体处理后PBO纤维表面退化现象207
参考文献209
第9章空气DBD等离子体处理对PBO/BMI复合材料界面性能的影响211
9.1空气DBD等离子体处理时间对PBO/BMI复合材料界面性能的影响211
9.1.1空气DBD等离子体处理时间对PBO/BMI复合材料ILSS的影响212
9.1.2空气DBD等离子体处理时间对PBO纤维表面化学成分的影响213
9.1.3空气DBD等离子体处理时间对PBO纤维表面形貌及粗糙度的影响217
9.1.4空气DBD等离子体处理时间对PBO纤维表面浸润性的影响220
9.1.5空气DBD等离子体处理时间对PBO纤维单丝拉伸强度的影响221
9.2空气DBD等离子体功率密度对PBO/BMI复合材料界面性能的影响222
9.2.1空气DBD等离子体功率密度对PBO/BMI复合材料ILSS的影响223
9.2.2空气DBD等离子体功率密度对PBO纤维表面化学成分的影响224
9.2.3空气DBD等离子体功率密度对PBO纤维表面形貌及粗糙度的影响227
9.2.4空气DBD等离子体功率密度对PBO纤维表面浸润性的影响230
9.2.5空气DBD等离子体功率密度对PBO纤维单丝拉伸强度的影响231
参考文献231
第10章氧气DBD等离子体处理对PBO/BMI复合材料界面性能的影响233
10.1氧气DBD等离子体处理时间对PBO/BMI复合材料界面性能的影响233
10.1.1氧气DBD等离子体处理时间对PBO/BMI复合材料ILSS的影响234
10.1.2氧气DBD等离子体处理时间对PBO纤维表面化学成分的影响235
10.1.3氧气DBD等离子体处理时间对PBO纤维表面形貌及粗糙度的影响238
10.1.4氧气DBD等离子体处理时间对PBO纤维单丝拉伸强度的影响241
10.2氧气DBD等离子体功率密度对PBO/BMI复合材料界面性能的影响241
10.2.1氧气DBD等离子体功率密度对PBO/BMI复合材料ILSS的影响242
10.2.2氧气DBD等离子体功率密度对PBO纤维表面化学成分的影响243
10.2.3氧气DBD等离子体功率密度对PBO纤维表面形貌及粗糙度的影响246
10.2.4氧气DBD等离子体功率密度对PBO纤维单丝拉伸强度的影响249
参考文献249
第11章碳/PBO混杂纤维增强BMI树脂基复合材料的界面性能251
11.1空气射频等离子体对CF/BMI复合材料界面性能的影响252
11.1.1空气射频等离子体处理时间对CF/BMI复合材料ILSS的影响253
11.1.2空气射频等离子体处理时间对CF表面化学成分的影响254
11.1.3空气射频等离子体处理时间对CF表面形貌及粗糙度的影响257
11.1.4空气射频等离子体对CF/BMI复合材料断面形貌的影响258
11.2碳/PBO混杂纤维复合材料的制备及其界面黏结性能的研究259
11.2.1碳/PBO混杂纤维增强BMI树脂基复合材料的制备259
11.2.2等离子体对碳/PBO混杂纤维增强BMI树脂基复合材料ILSS的影响259
11.3等离子体处理PBO纤维的时效性及PBO/BMI复合材料的断裂模式、吸水率测试261
11.3.1空气、氧气DBD等离子体处理后PBO纤维表面时效性研究261
11.3.2PBO/BMI复合材料的断面形貌及断裂模式分析269
11.3.3PBO/BMI复合材料吸水率的研究271
参考文献273
作者:陈平,于祺 著
出版时间:2017年版
内容简介
本书共11章,主要包括两部分内容:碳纤维增强双马树脂基复合材料在空间环境下的损伤与机理、高性能纤维低温等离子体表面处理与复合材料界面调控技术。首先对碳纤维增强双马树脂基复合材料在真空热循环、质子与电子辐照环境下性能演化及其损伤机理进行了分析讨论。然后重点阐述高性能连续纤维(包括:T700碳纤维、PBO纤维和碳纤维混杂PBO纤维)经射频(ICP)和介质阻挡放电(DBD)低温等离子体改性处理前后,纤维表面状态、表面组成、表面形貌、浸润性能的变化规律以及经等离子体处理前后纤维增强双马树脂基复合材料界面结构与性能的影响关系及变化规律、复合材料界面黏结和破坏机理。后对纤维表面时效性及其对纤维增强双马树脂基复合材料界面性能的影响关系也进行了论述。 本书可供从事先进复合材料、航空航天材料科学研究、技术开发的工作人员及高等院校相关专业的师生参考。
目录
第1章绪论1
1.1树脂基复合材料的发展简史1
1.2双马树脂的研究进展3
1.2.1双马来酰亚胺的合成原理3
1.2.2双马来酰亚胺的结构与性能6
1.2.3改性双马来酰亚胺树脂及其应用6
1.3高性能纤维的结构与性能7
1.3.1碳纤维的结构与性能7
1.3.2聚对亚苯基苯并双唑纤维的结构与性能10
1.4聚合物基复合材料的界面11
1.5纤维表面改性处理方法研究进展14
1.5.1纤维表面改性方法概况14
1.5.2纤维表面等离子体改性21
1.6空间环境对碳纤维/双马树脂基复合材料性能影响的研究进展22
1.6.1空间环境因素概述22
1.6.2空间环境效应的研究进展27
参考文献31
第2章实验材料与结构性能表征方法41
2.1实验原材料及实验仪器41
2.1.1实验原材料41
2.1.2实验仪器42
2.2纤维表面等离子体处理43
2.2.1碳纤维表面处理45
2.2.2PBO纤维表面等离子体处理45
2.3复合材料的制备46
2.4空间环境模拟试验47
2.4.1真空热循环试验47
2.4.2质子辐照试验48
2.4.3电子辐照试验48
2.5结构性能表征方法49
2.5.1X射线光电子能谱分析49
2.5.2纤维的表面形貌分析49
2.5.3动态接触角分析50
2.5.4复合材料的性能测试52
2.5.5复合材料破坏形貌分析53
2.5.6傅里叶红外光谱分析53
2.5.7傅里叶变换红外衰减全反射光谱分析53
2.5.8热失重分析53
2.5.9动态力学分析54
2.5.10热膨胀分析54
2.5.11质损率测试54
2.5.12复合材料的热应力分析54
参考文献56
第3章真空热循环对碳纤维/双马树脂基复合材料性能的影响及热应力模拟58
3.1真空热循环对CF/BMI复合材料热性能的影响59
3.1.1真空热循环对CF/BMI复合材料动态力学性能的影响59
3.1.2真空热循环对CF/BMI复合材料热稳定性的影响61
3.1.3真空热循环对CF/BMI复合材料线膨胀行为的影响64
3.2真空热循环对CF/BMI复合材料质损率的影响66
3.3真空热循环对CF/BMI复合材料表面形貌和表面粗糙度的影响67
3.4真空热循环对CF/BMI复合材料力学性能的影响71
3.4.1真空热循环对CF/BMI复合材料横向拉伸强度的影响71
3.4.2真空热循环对CF/BMI复合材料弯曲强度的影响73
3.4.3真空热循环对CF/BMI复合材料层间剪切强度的影响75
3.5真空热循环过程中CF/BMI复合材料的热应力模拟76
3.5.1CF/BMI复合材料的有限元分析模型77
3.5.2CF/BMI复合材料热应力的分布规律79
3.5.3CF/BMI复合材料的潜在破坏区域分析83
3.5.4CF/BMI复合材料热应力的重新分布87
参考文献91
第4章质子辐照对碳纤维/双马树脂基复合材料性能的影响94
4.1质子辐照对CF/BMI复合材料表面性能的影响95
4.1.1质子辐照对CF/BMI复合材料表面官能团的影响95
4.1.2质子辐照对CF/BMI复合材料表面化学成分的影响98
4.1.3质子辐照对CF/BMI复合材料表面形貌和表面粗糙度的影响101
4.2质子辐照对CF/BMI复合材料热性能的影响103
4.2.1质子辐照对CF/BMI复合材料动态力学性能的影响104
4.2.2质子辐照对CF/BMI复合材料热稳定性的影响107
4.3质子辐照对CF/BMI复合材料力学性能的影响108
4.3.1质子辐照对CF/BMI复合材料弯曲强度的影响108
4.3.2质子辐照对CF/BMI复合材料层间剪切强度的影响109
4.4质子辐照对CF/BMI复合材料质损率的影响110
参考文献111
第5章电子辐照对碳纤维/双马树脂基复合材料性能的影响113
5.1电子辐照对CF/BMI复合材料表面性能的影响114
5.1.1电子辐照对CF/BMI复合材料表面化学成分的影响114
5.1.2电子辐照对CF/BMI复合材料表面官能团的影响117
5.1.3电子辐照对CF/BMI复合材料表面形貌和表面粗糙度的影响119
5.2电子辐照对CF/BMI复合材料热性能的影响120
5.2.1电子辐照对CF/BMI复合材料动态力学性能的影响120
5.2.2电子辐照对CF/BMI复合材料热稳定性的影响123
5.3电子辐照对CF/BMI复合材料力学性能的影响124
5.3.1电子辐照对CF/BMI复合材料弯曲强度的影响124
5.3.2电子辐照对CF/BMI复合材料层间剪切强度的影响125
5.4电子辐照对CF/BMI复合材料质损率的影响126
参考文献127
第6章氧气ICP等离子体表面处理对PBO/BMI复合材料界面性能的影响129
6.1氧气等离子体处理功率对复合材料ILSS的影响129
6.1.1氧气等离子体放电功率对纤维表面化学成分的影响130
6.1.2氧气等离子体处理功率对纤维表面形貌及粗糙度的影响134
6.1.3氧气等离子体处理功率对纤维表面浸润性的影响136
6.2氧气等离子体处理时间对复合材料ILSS的影响138
6.2.1氧气等离子体处理时间对纤维表面化学成分的影响139
6.2.2氧气等离子体处理时间对纤维表面形貌及粗糙度的影响142
6.2.3氧气等离子体处理时间对纤维表面浸润性的影响144
6.3氧气等离子体处理气压对复合材料ILSS的影响145
6.3.1氧气等离子体处理气压对纤维表面化学成分的影响146
6.3.2氧气等离子体处理气压对纤维表面形貌及粗糙度的影响149
6.3.3氧气等离子体处理气压对纤维表面浸润性的影响150
6.4氧气等离子体对PBO纤维表面化学改性机理探讨151
参考文献153
第7章氩气ICP等离子体表面处理对PBO/BMI复合材料界面性能的影响155
7.1氩气等离子体处理功率对PBO/BMI复合材料ILSS的影响155
7.1.1氩气等离子体处理功率对PBO纤维表面化学成分的影响156
7.1.2氩气等离子体处理功率对纤维表面形貌及粗糙度的影响160
7.1.3氩气等离子体处理功率对纤维表面浸润性的影响162
7.2氩气等离子体处理时间对PBO/BMI复合材料ILSS的影响164
7.2.1氩气等离子体处理时间对PBO纤维表面化学成分的影响165
7.2.2氩气等离子体处理时间对纤维表面形貌及粗糙度的影响168
7.2.3氩气等离子体处理时间对纤维表面浸润性的影响170
7.3氩气等离子体处理气压对PBO/BMI复合材料ILSS的影响170
7.3.1氩气等离子体处理气压对纤维表面化学成分的影响171
7.3.2氩气等离子体处理气压对纤维表面形貌及粗糙度的影响174
7.3.3氩气等离子体处理气压对纤维表面浸润性的影响176
7.4氩气等离子体对PBO纤维表面化学改性机理探讨176
参考文献178
第8章氧/氩混合气体ICP等离子体处理对PBO/BMI复合材料界面性能的影响179
8.1氧/氩混合气体等离子体的气体组分对复合材料ILSS的影响180
8.1.1氧/氩混合等离子体的气体组成对纤维表面化学成分的影响181
8.1.2氧/氩混合等离子体的气体组成对纤维表面形貌及粗糙度的影响186
8.2氧/氩混合气体等离子体处理功率对复合材料ILSS的影响188
8.2.1氧/氩混合气体等离子体处理功率对纤维表面化学成分的影响189
8.2.2氧/氩混合气体等离子体处理功率对纤维表面形貌及粗糙度的影响192
8.3氧/氩混合气体等离子体处理时间对复合材料ILSS的影响193
8.3.1氩/氧混合气体等离子体处理时间对纤维表面化学成分的影响194
8.3.2氧/氩混合气体等离子体处理时间对纤维表面形貌及粗糙度的影响197
8.4氧/氩混合气体等离子体对PBO纤维表面化学改性机理探讨198
8.5PBO/BMI复合材料层间断裂机理、耐湿热性质及等离子体改性退化现象200
8.5.1等离子体处理对复合材料层间断裂形貌的影响及界面增强机理探讨200
8.5.2等离子体处理对PBO/BMI复合材料耐湿热性能的影响205
8.5.3等离子体处理后PBO纤维表面退化现象207
参考文献209
第9章空气DBD等离子体处理对PBO/BMI复合材料界面性能的影响211
9.1空气DBD等离子体处理时间对PBO/BMI复合材料界面性能的影响211
9.1.1空气DBD等离子体处理时间对PBO/BMI复合材料ILSS的影响212
9.1.2空气DBD等离子体处理时间对PBO纤维表面化学成分的影响213
9.1.3空气DBD等离子体处理时间对PBO纤维表面形貌及粗糙度的影响217
9.1.4空气DBD等离子体处理时间对PBO纤维表面浸润性的影响220
9.1.5空气DBD等离子体处理时间对PBO纤维单丝拉伸强度的影响221
9.2空气DBD等离子体功率密度对PBO/BMI复合材料界面性能的影响222
9.2.1空气DBD等离子体功率密度对PBO/BMI复合材料ILSS的影响223
9.2.2空气DBD等离子体功率密度对PBO纤维表面化学成分的影响224
9.2.3空气DBD等离子体功率密度对PBO纤维表面形貌及粗糙度的影响227
9.2.4空气DBD等离子体功率密度对PBO纤维表面浸润性的影响230
9.2.5空气DBD等离子体功率密度对PBO纤维单丝拉伸强度的影响231
参考文献231
第10章氧气DBD等离子体处理对PBO/BMI复合材料界面性能的影响233
10.1氧气DBD等离子体处理时间对PBO/BMI复合材料界面性能的影响233
10.1.1氧气DBD等离子体处理时间对PBO/BMI复合材料ILSS的影响234
10.1.2氧气DBD等离子体处理时间对PBO纤维表面化学成分的影响235
10.1.3氧气DBD等离子体处理时间对PBO纤维表面形貌及粗糙度的影响238
10.1.4氧气DBD等离子体处理时间对PBO纤维单丝拉伸强度的影响241
10.2氧气DBD等离子体功率密度对PBO/BMI复合材料界面性能的影响241
10.2.1氧气DBD等离子体功率密度对PBO/BMI复合材料ILSS的影响242
10.2.2氧气DBD等离子体功率密度对PBO纤维表面化学成分的影响243
10.2.3氧气DBD等离子体功率密度对PBO纤维表面形貌及粗糙度的影响246
10.2.4氧气DBD等离子体功率密度对PBO纤维单丝拉伸强度的影响249
参考文献249
第11章碳/PBO混杂纤维增强BMI树脂基复合材料的界面性能251
11.1空气射频等离子体对CF/BMI复合材料界面性能的影响252
11.1.1空气射频等离子体处理时间对CF/BMI复合材料ILSS的影响253
11.1.2空气射频等离子体处理时间对CF表面化学成分的影响254
11.1.3空气射频等离子体处理时间对CF表面形貌及粗糙度的影响257
11.1.4空气射频等离子体对CF/BMI复合材料断面形貌的影响258
11.2碳/PBO混杂纤维复合材料的制备及其界面黏结性能的研究259
11.2.1碳/PBO混杂纤维增强BMI树脂基复合材料的制备259
11.2.2等离子体对碳/PBO混杂纤维增强BMI树脂基复合材料ILSS的影响259
11.3等离子体处理PBO纤维的时效性及PBO/BMI复合材料的断裂模式、吸水率测试261
11.3.1空气、氧气DBD等离子体处理后PBO纤维表面时效性研究261
11.3.2PBO/BMI复合材料的断面形貌及断裂模式分析269
11.3.3PBO/BMI复合材料吸水率的研究271
参考文献273
相关资料
- 塑料加工技术解惑系列 塑料着色实例疑难解答 刘西文,田志坚 编著 2017年版
- 木材干燥与炭化技术 郭明辉,孙伟伦 编著 2017年版
- 工程材料性能与选用 [韩永生 编著] 2013年 可复制文字版
- 简明材料力学习题册 侯作富,胡述龙,张新红 主编 2015年版
- 应用流变学丛书 多孔材料与聚合物材料流变理论及其应用 张俊彦,赵荣国 著 2015年版
- 塑料助剂与配方设计技术 第4版 王兴为,王玮,刘琴 等编著 2017年版
- 中华青少年科学文化博览丛书·科学技术卷 图说纳米世界 [李书源 , 左玉河,詹志平 主编] 2012年版
- 烧结钕铁硼稀土永磁材料与技术 [周寿增,董清飞,高学绪 编著] 2011年版
- 全国优博文库 纳米TiO2表面改性及光催化降解典型有毒污染物研究 王楠,朱丽华 著 2015年版
- 中国新材料产业发展报告(2013) 国家发展和改革委员会高技术产业司,中国材料研究学会 编写 2014年版