环境保护中等离子体治理技术 英文版 杜长明 2018年版
- 资料名称:环境保护中等离子体治理技术 英文版 杜长明 2018年版
- 英文名称:
- 文件大小:13.88 MB
- 标准类型:行业图书
- 标准语言:英文版
- 授权形式:免费
- 文件类型:PDF文档
- 下载次数:3 加入收藏
- 标签:
资料介绍
环境保护中等离子体治理技术 英文版
作者:杜长明
出版时间:2018年版
内容简介
本书主要介绍了环境保护中等离子体治理技术现状,包括等离子体消毒、空气污染控制、固体废物处理及水净化技术。首先介绍了一种新型非热等离子体流化床修复菲污染土壤,当能量密度为5960 J/g时,菲的除土率高达95%,并提出了等离子体修复菲污染土壤的机理。利用滑动弧等离子体反应器进行混合染料废水的降解和脱色,混合染料的降解与脱色符合准一级动力学规律。把微等离子体系统用于去除废水中铬,当能量密度为300J/mL时,经过2min的放电处理,铬的去除率高达100%。利用湿空气滑动弧能够快速实现高效的表面杀菌,不同空气流速下以及放电间距下灭菌的动力学表明增大空气流速以及缩小放电间距能够改善杀菌效果。*后,提出了一种新型等离子体流化床净化有机废气技术。
目录
1 Application of Plasma Technology for Remediating Environment:An Introduction
1.1 Introduction
1.2 Plasma Generation and Application
1.3 Plasma Technology in Environmental Protection
References
2 Remediation of Phenanthrene-contaminated Soil Using Non-thermal Plasma Fluidized Bed
2.1 Introduction
2.2 Experimental Section
2.2.1 Experimental Setup
2.2.2 Materials and Analyses
2.3 Results and Discussion
2.3.1 Effect of the Solid Bed Location
2.3.2 Effect of the Input Energy Density
2.3.3 Effect of the Flow Rate of the Carrier Gas
2.3.4 Effect of the Soil Moisture Content
2.3.5 Role of Active Species
2.3.6 TOC Analysis
2.3.7 Proposed Pathway of the PHE Degradation
2.4 Conclusions
References
3 Degradation and Discoloration of Textile Dyes Using Gliding Arc Plasma Combined with Fenton Catalysis
3.1 Introduction
3.2 Experimental Section
3.2.1 Plasma Apparatus
3.2.2 Materials and Analytical Methods
3.3 Results and Discussion
3.3.1 Plasma Discoloration and Degradation of Single Dye
3.3.2 Treatment Results of Mixed Dye Wastewater
3.3.3 Discoloration and Degradation in the Presence of Zerovalent Iron (ZVI)
3.3.4 Comparison of Different Research Studies and Their Major Results
3.4 Conclusions
References
4 Reduction and Removal of Cr(VI) from Aqueous Solution by Microplasma
4.1 Introduction
4.2 Experimental Details
4.2.1 Discharge Apparatus and Materials
4.2.2 Analyses
4.3 Results
4.3.1 Effect of Gas Flow Rate on Cr(VI) Reduction
4.3.2 Effect of Initial pH on Cr(VI) Reduction
4.3.3 Effect of Stirring on Cr(VI) Reduction
4.3.4 Effect of Initial Cr(VI) Concentration on Cr(VI) Reduction.
4.3.5 Effect of Various Discharge Gas on Cr(VI) Reduction
4.3.6 Effect of Input Power on Cr(VI) Reduction
4.3.7 Effect of Ethanol on Cr(VI) Reduction and Removal
4.3.8 Effect of Initial pH on the Removal of Cr(VI) in the Presence of Ethanol
4.3.9 Characterization of the Sediment
4.4 Discussion
4.5 Conclusions
References
5 Surface Sterilization by Atmospheric Pressure Non-thermal Plasma .
5.1 Introduction
5.2 Experimental Section
5.3 Results and Discussion
5.3.1 Destruction of Bacteria by Atmospheric Pressure Non-thermal Plasma
5.3.2 Influence of Air Flow Rate on the Sterilization Efficiency
5.3.3 Influence of Gap Distance Between Agar Surfaces and Electrodes on the Sterilization Efficiency
5.3.4 Temperature Variations of Surface Sterilization Efficiency under Different Contact Distances
5.3.5 Influence of the Total Number of Bacteria in the Surface on the Sterilization Efficiency
5.3.6 Scanning Electron Microscopic Photomicrographs of E-coli in the Treatment
5.3.7 Mechanism of Bacteria Inactivation by Non-thermal Plasma
5.4 Conclusions
References
6 Removal of Volatile Organic Compounds Using Plasma Fluidized Bed
6.1 Introduction
6.2 Removal of Volatile Organic Compounds Using Plasma Fluidized Bed with Catalysis
6.2.1 Experimental Section
6.2.2 Results
6.3 Removal of Volatile Organic Compounds Using Plasma Fluidized Bed with Activated Carbon
6.3.1 Experimental Section
6.3.2 Results
Reference
Index
作者:杜长明
出版时间:2018年版
内容简介
本书主要介绍了环境保护中等离子体治理技术现状,包括等离子体消毒、空气污染控制、固体废物处理及水净化技术。首先介绍了一种新型非热等离子体流化床修复菲污染土壤,当能量密度为5960 J/g时,菲的除土率高达95%,并提出了等离子体修复菲污染土壤的机理。利用滑动弧等离子体反应器进行混合染料废水的降解和脱色,混合染料的降解与脱色符合准一级动力学规律。把微等离子体系统用于去除废水中铬,当能量密度为300J/mL时,经过2min的放电处理,铬的去除率高达100%。利用湿空气滑动弧能够快速实现高效的表面杀菌,不同空气流速下以及放电间距下灭菌的动力学表明增大空气流速以及缩小放电间距能够改善杀菌效果。*后,提出了一种新型等离子体流化床净化有机废气技术。
目录
1 Application of Plasma Technology for Remediating Environment:An Introduction
1.1 Introduction
1.2 Plasma Generation and Application
1.3 Plasma Technology in Environmental Protection
References
2 Remediation of Phenanthrene-contaminated Soil Using Non-thermal Plasma Fluidized Bed
2.1 Introduction
2.2 Experimental Section
2.2.1 Experimental Setup
2.2.2 Materials and Analyses
2.3 Results and Discussion
2.3.1 Effect of the Solid Bed Location
2.3.2 Effect of the Input Energy Density
2.3.3 Effect of the Flow Rate of the Carrier Gas
2.3.4 Effect of the Soil Moisture Content
2.3.5 Role of Active Species
2.3.6 TOC Analysis
2.3.7 Proposed Pathway of the PHE Degradation
2.4 Conclusions
References
3 Degradation and Discoloration of Textile Dyes Using Gliding Arc Plasma Combined with Fenton Catalysis
3.1 Introduction
3.2 Experimental Section
3.2.1 Plasma Apparatus
3.2.2 Materials and Analytical Methods
3.3 Results and Discussion
3.3.1 Plasma Discoloration and Degradation of Single Dye
3.3.2 Treatment Results of Mixed Dye Wastewater
3.3.3 Discoloration and Degradation in the Presence of Zerovalent Iron (ZVI)
3.3.4 Comparison of Different Research Studies and Their Major Results
3.4 Conclusions
References
4 Reduction and Removal of Cr(VI) from Aqueous Solution by Microplasma
4.1 Introduction
4.2 Experimental Details
4.2.1 Discharge Apparatus and Materials
4.2.2 Analyses
4.3 Results
4.3.1 Effect of Gas Flow Rate on Cr(VI) Reduction
4.3.2 Effect of Initial pH on Cr(VI) Reduction
4.3.3 Effect of Stirring on Cr(VI) Reduction
4.3.4 Effect of Initial Cr(VI) Concentration on Cr(VI) Reduction.
4.3.5 Effect of Various Discharge Gas on Cr(VI) Reduction
4.3.6 Effect of Input Power on Cr(VI) Reduction
4.3.7 Effect of Ethanol on Cr(VI) Reduction and Removal
4.3.8 Effect of Initial pH on the Removal of Cr(VI) in the Presence of Ethanol
4.3.9 Characterization of the Sediment
4.4 Discussion
4.5 Conclusions
References
5 Surface Sterilization by Atmospheric Pressure Non-thermal Plasma .
5.1 Introduction
5.2 Experimental Section
5.3 Results and Discussion
5.3.1 Destruction of Bacteria by Atmospheric Pressure Non-thermal Plasma
5.3.2 Influence of Air Flow Rate on the Sterilization Efficiency
5.3.3 Influence of Gap Distance Between Agar Surfaces and Electrodes on the Sterilization Efficiency
5.3.4 Temperature Variations of Surface Sterilization Efficiency under Different Contact Distances
5.3.5 Influence of the Total Number of Bacteria in the Surface on the Sterilization Efficiency
5.3.6 Scanning Electron Microscopic Photomicrographs of E-coli in the Treatment
5.3.7 Mechanism of Bacteria Inactivation by Non-thermal Plasma
5.4 Conclusions
References
6 Removal of Volatile Organic Compounds Using Plasma Fluidized Bed
6.1 Introduction
6.2 Removal of Volatile Organic Compounds Using Plasma Fluidized Bed with Catalysis
6.2.1 Experimental Section
6.2.2 Results
6.3 Removal of Volatile Organic Compounds Using Plasma Fluidized Bed with Activated Carbon
6.3.1 Experimental Section
6.3.2 Results
Reference
Index