域论(第二版 英文版)
- 资料名称:域论(第二版 英文版)
- 英文名称:
- 文件大小:11.11 MB
- 标准类型:行业图书
- 标准语言:简体中文
- 授权形式:免费
- 文件类型:PDF文档
- 下载次数:3 加入收藏
- 标签:
资料介绍
域论(第二版 英文版)
出版时间:2011年版
内容简介
《域论(第2版)(英文版)》是一部研究生水平的域论的入门书籍。每节后面都有不少练习,使得本书既是一本很好的教程,也是一本不错的参考书。本书从头开始阐述了域基本理论,如果具备本科生水平的抽象代数知识将对学习本书具有很大的帮助。本书是第二版,作者基于第一版及在运用第一版在教学过程中的经验,又将本书中的基本内容进行了改进。增加了新的练习和新的一章从历史展望角度讲述了Galois理论,通书不断涌现新话题,包括代数基本理论的证明、不可约情形的讨论、Zp上多项式因式分解的Berlekamp代数等。目次:基础;(第一部分)域扩展:多项式;域扩展;嵌入和可分性;代数独立性;(第二部分)Galois理论Ⅰ,历史回顾;Galois理论Ⅱ,理论;Galois理论Ⅲ,多项式的Galois群;域扩展作为向量空间;有限域Ⅰ,基本性质;有限域Ⅱ,附加性质;单位根;循环扩张;可解性扩张;(第三部分)二项式;二项式族。
目录
preface
contents
0 preliminaries
0.1 lattices
0.2 groups
0.3 the symmetric group
0.4 rings
0.5 integral domains
0.6 unique factorization domains
0.7 principal ideal domains
0.8 euclidean domains
0.9 tensor products
exercises
part i-field extensions
1 polynomials
1.1 polynomials over a ring
1.2 primitive polynomials and irreducibility
1.3 the division algorithm and its consequences
1.4 splitting fields
1.5 the minimal polynomial
1.6 multiple roots
1.7 testing for irreducibility
exercises
2 field extensions
2.1 the lattice of subfields of a field
2.2 types of field extensions
2.3 finitely generated extensions
2.4 simple extensions
2.5 finite extensions
2.6 algebraic extensions
2.7 algebraic closures
2.8 embeddings and their extensions.
2.9 splitting fields and normal extensions
exercises
3 embeddings and separability
3.1 recap and a useful lemma
3.2 the number of extensions: separable degree
3.3 separable extensions
3.4 perfect fields
3.5 pure inseparability
3.6 separable and purely inseparable closures
exercises
4 algebraic independence
4.1 dependence relations
4.2 algebraic dependence
4.3 transcendence bases
4.4 simple transcendental extensions
exercises
part ii---galois theory
5 galois theory i: an historical perspective
5.1 the quadratic equation
5.2 the cubic and quartic equations
5.3 higher-degree equations
5.4 newton's contribution: symmetric polynomials
5.5 vandermonde
5.6 lagrange
5.7 gauss
5.8 back to lagrange
5.9 galois
5.10 a very brief look at the life of galois
6 galois theory i1: the theory
6.1 galois connections
6.2 the galois correspondence
6.3 who's closed?
6.4 normal subgroups and normal extensions
6.5 more on galois groups
6.6 abelian and cyclic extensions
6.7 linear disjointness
exercises
7 galois theory iii: the galois group of a polynomial
7.1 the galois group of a polynomial
7.2 symmetric polynomials
7.3 the fundamental theorem of algebra.
7.4 the discriminant of a polynomial
7.5 the galois groups of some small-degree polynomials
exercises
8 a field extension as a vector space
8.1 the norm and the trace
*8.2 characterizing bases
*8.3 the normal basis theorem
exercises
9 finite fields i: basic properties
9.1 finite fields redux
9.2 finite fields as splitting fields
9.3 the subfields of a finite field.
9.4 the multiplicative structure of a finite field
9.5 the galois group of a finite field
9.6 irreducible polynomials over finite fields
*9.7 normal bases
*9.8 the algebraic closure of a finite field
exercises
10 finite fields i1: additional properties
10.1 finite field arithmetic
10.2 the number of irreducible polynomials
10.3 polynomial functions
10.4 linearized polynomials
exercises
11 the roots of unity
11.1 roots of unity
11.2 cyclotomic extensions
11.3 normal bases and roots of unity
11.4 wedderburn's theorem
11.5 realizing groups as galois groups
exercises
12 cyclic extensions
12.1 cyclic extensions
12.2 extensions of degree char(f)
exercises
13 solvable extensions
13.1 solvable groups
13.2 solvable extensions
13.3 radical extensions
13.4 solvability by radicals
13.5 solvable equivalent to solvable by radicals
13.6 natural and accessory irrationalities
13.7 polynomial equations
exercises
part iii--the theory of binomials
14 binomials
14.1 irreducibility
14.2 the galois group of a binomial
14.3 the independence of irrational numbers
exercises
15 families of binomials
15.1 the splitting field
15.2 dual groups and pairings
15.3 kummer theory
exercises
appendix: mobius inversion
partially ordered sets
the incidence algebra of a partially ordered set
classical mobius inversion
multiplicative version of m6bius inversion
references
index
出版时间:2011年版
内容简介
《域论(第2版)(英文版)》是一部研究生水平的域论的入门书籍。每节后面都有不少练习,使得本书既是一本很好的教程,也是一本不错的参考书。本书从头开始阐述了域基本理论,如果具备本科生水平的抽象代数知识将对学习本书具有很大的帮助。本书是第二版,作者基于第一版及在运用第一版在教学过程中的经验,又将本书中的基本内容进行了改进。增加了新的练习和新的一章从历史展望角度讲述了Galois理论,通书不断涌现新话题,包括代数基本理论的证明、不可约情形的讨论、Zp上多项式因式分解的Berlekamp代数等。目次:基础;(第一部分)域扩展:多项式;域扩展;嵌入和可分性;代数独立性;(第二部分)Galois理论Ⅰ,历史回顾;Galois理论Ⅱ,理论;Galois理论Ⅲ,多项式的Galois群;域扩展作为向量空间;有限域Ⅰ,基本性质;有限域Ⅱ,附加性质;单位根;循环扩张;可解性扩张;(第三部分)二项式;二项式族。
目录
preface
contents
0 preliminaries
0.1 lattices
0.2 groups
0.3 the symmetric group
0.4 rings
0.5 integral domains
0.6 unique factorization domains
0.7 principal ideal domains
0.8 euclidean domains
0.9 tensor products
exercises
part i-field extensions
1 polynomials
1.1 polynomials over a ring
1.2 primitive polynomials and irreducibility
1.3 the division algorithm and its consequences
1.4 splitting fields
1.5 the minimal polynomial
1.6 multiple roots
1.7 testing for irreducibility
exercises
2 field extensions
2.1 the lattice of subfields of a field
2.2 types of field extensions
2.3 finitely generated extensions
2.4 simple extensions
2.5 finite extensions
2.6 algebraic extensions
2.7 algebraic closures
2.8 embeddings and their extensions.
2.9 splitting fields and normal extensions
exercises
3 embeddings and separability
3.1 recap and a useful lemma
3.2 the number of extensions: separable degree
3.3 separable extensions
3.4 perfect fields
3.5 pure inseparability
3.6 separable and purely inseparable closures
exercises
4 algebraic independence
4.1 dependence relations
4.2 algebraic dependence
4.3 transcendence bases
4.4 simple transcendental extensions
exercises
part ii---galois theory
5 galois theory i: an historical perspective
5.1 the quadratic equation
5.2 the cubic and quartic equations
5.3 higher-degree equations
5.4 newton's contribution: symmetric polynomials
5.5 vandermonde
5.6 lagrange
5.7 gauss
5.8 back to lagrange
5.9 galois
5.10 a very brief look at the life of galois
6 galois theory i1: the theory
6.1 galois connections
6.2 the galois correspondence
6.3 who's closed?
6.4 normal subgroups and normal extensions
6.5 more on galois groups
6.6 abelian and cyclic extensions
6.7 linear disjointness
exercises
7 galois theory iii: the galois group of a polynomial
7.1 the galois group of a polynomial
7.2 symmetric polynomials
7.3 the fundamental theorem of algebra.
7.4 the discriminant of a polynomial
7.5 the galois groups of some small-degree polynomials
exercises
8 a field extension as a vector space
8.1 the norm and the trace
*8.2 characterizing bases
*8.3 the normal basis theorem
exercises
9 finite fields i: basic properties
9.1 finite fields redux
9.2 finite fields as splitting fields
9.3 the subfields of a finite field.
9.4 the multiplicative structure of a finite field
9.5 the galois group of a finite field
9.6 irreducible polynomials over finite fields
*9.7 normal bases
*9.8 the algebraic closure of a finite field
exercises
10 finite fields i1: additional properties
10.1 finite field arithmetic
10.2 the number of irreducible polynomials
10.3 polynomial functions
10.4 linearized polynomials
exercises
11 the roots of unity
11.1 roots of unity
11.2 cyclotomic extensions
11.3 normal bases and roots of unity
11.4 wedderburn's theorem
11.5 realizing groups as galois groups
exercises
12 cyclic extensions
12.1 cyclic extensions
12.2 extensions of degree char(f)
exercises
13 solvable extensions
13.1 solvable groups
13.2 solvable extensions
13.3 radical extensions
13.4 solvability by radicals
13.5 solvable equivalent to solvable by radicals
13.6 natural and accessory irrationalities
13.7 polynomial equations
exercises
part iii--the theory of binomials
14 binomials
14.1 irreducibility
14.2 the galois group of a binomial
14.3 the independence of irrational numbers
exercises
15 families of binomials
15.1 the splitting field
15.2 dual groups and pairings
15.3 kummer theory
exercises
appendix: mobius inversion
partially ordered sets
the incidence algebra of a partially ordered set
classical mobius inversion
multiplicative version of m6bius inversion
references
index
相关资料
- 高等数学 2 自学指导 第1分册 线性代数 臧振春,刘泮振主编 侯俊林,苏白云,王晓艳副主编 1995年版
- 高等数学 上 翟术风,徐燕,柴富杰主编 2017年版
- 高等数学 上册 第2版 四川大学数学学院编 2018年版
- 高等数学 上册 陆海,石磊主编 廖小林,冯国锋,邹伟龙副主编 2017年版
- 高等数学 下 付小娟,李宗涛主编 2017年版
- 高等数学 下册 陆海,石磊主编 2017年版
- 高等数学学习指导与技能训练 李志荣 2018年版
- 高等数学练习与提高 二 魏周超,邹敏主编 2018年版
- 高等数学解题指引与同步练习 1 函数、极限与连续 曾令武,吴满编著 2008年版
- 2023余丙森《概率论语数理统计辅导讲义》