线性发展方程的单参数半群(英文版) Springer数学研究生丛书
- 资料名称:线性发展方程的单参数半群(英文版) Springer数学研究生丛书
- 英文名称:
- 文件大小:83.61 MB
- 标准类型:行业图书
- 标准语言:简体中文
- 授权形式:免费
- 文件类型:PDF文档
- 下载次数:3 加入收藏
- 标签:
资料介绍
线性发展方程的单参数半群(英文版)
出版时间:2013年版
丛编项: Springer数学研究生丛书
内容简介
《Springer数学研究生丛书:线性发展方程的单参数半群(英文版)》全面讲述了强连续线性算子的单参半群理论。《Springer数学研究生丛书:线性发展方程的单参数半群(英文版)》的最大特点是在常微分和偏分方程算子、衰退方程和volterra方程和控制理论中广泛应用。而且,书中也强调了一些哲学动机和历史背景。
目录
Preface
Prelude
Ⅰ. Linear Dynamical Systems
1. Cauchy's Functional Equation
2. Finite-Dimensional Systems: Matrix Semigroups
3. Uniformly Continuous Operator Semigroups
4. More Semigroups
A. Multiplication Semigroups On Co(Fi)
B. Multiplication Semigroups On Lp(Ω,Μ)
C. Translation Semigroups
5. Strongly Continuous Semigroups
A. Basic Properties
B. Standard Constructions
Notes
Ⅱ. Semigroups, Generators, And Resolvents
1. Generators Of Semigroups And Their Resolvents
2. Examples Revisited
A. Standard Constructions
B. Standard Examples
3. Hille-Yosida Generation Theorems
A. Generation Of Groups And Semigroups
B. Dissipative Operators And Contraction Semigroups
C. More Examples
4. Special Classes Of Semigroups
A. Analytic Semigroups
B. Differentiable Semigroups
C. Eventually Norm-Continuons Semigroups
D. Eventually Compact Semigroups
E. Examples
5. Interpolation And Extrapolation Spaces For Semigroups
Simon Brendle
A. Sobolev Towers
B. Favard And Abstract H61der Spaces
C. Fractional Powers
6. Well-Posedness For Evolution Equations
Notes
Ⅲ Perturbation And Approximation Of Semigroups
1. Bounded Perturbations
2. Perturbations Of Contractive And Analytic Semigroups
3. More Perturbations
A. The Perturbation Theorem Of Desch-Schappacher
B. Comparison Of Semigroups
C. The Perturbation Theorem Of Miyadera-Voigt
D. Additive Versus Multiplicative Perturbations
4. Trotter-Kato Approximation Theorems
A. A Technical Tool: Pseudoresolvents
B. The Approximation Theorems
C. Examples
5. Approximation Formulas
A. Chernoff Product Formula
B. Inversion Formulas
Notes
Ⅳ Spectral Theory For Semigroups And Generators
1. Spectral Theory For Closed Operators
2. Spectrum Of Semigroups And Generators
A. Basic Theory
B. Spectrum Of Induced Semigroups
C. Spectrum Of Periodic Semigroups
3. Spectral Mapping Theorems
A. Examples And Counterexamples
B. Spectral Mapping Theorems For Semigroups
C. Weak Spectral Mapping Theorem For Bounded Groups
4. Spectral Theory And Perturbation
Notes
Ⅴ. Asymptotics Of Semigroups
1. Stability And Hyperbolicity For Semigroups
A. Stability Concepts
B. Characterization Of Uniform Exponential Stability
C. Hyperbolic Decompositions
2. Compact Semigroups
A. General Semigroups
B. Weakly Compact Semigroups
C. Strongly Compact Semigroups
3. Eventually Compact And Quasi-Compact Semigroups
4. Mean Ergodic Semigroups
Notes
Ⅵ. Semigroups Everywhere
1. Semigroups For Population Equations
A. Semigroup Method For The Cell Equation
B. Intermezzo On Positive Semigroups
C. Asymptotics For The Cell Equation
Notes
2. Semigroups For The Transport Equation
A. Solution Semigroup For The Reactor Problem
B. Spectral And Asymptotic Behavior
Notes
3. Semigroups For Second-Order Cauchy Problems
A. The State Space X = Xb1 × X
B. The State Space X = X × X
C. The State Space X = Xc1 × X
Notes
4. Semigroups For Ordinary Differential Operators
M. Campiti, G. Metafune, D. Pallara, And S. Romanelli
A. Nondegenerate Operators On R And R+
B. Nondegenerate Operators On Bounded Intervals
C. Degenerate Operators
D. Analyticity Of Degenerate Semigroups
Notes
5. Semigroups For Partial Differential Operators
Abdelaziz Rhandi
A. Notation And Preliminary Results
B. Elliptic Differential Operators With Constant Coefficients
C. Elliptic Differential Operators With Variable Coefficients
Notes
6. Semigroups For Delay Differential Equations
A. Well-Posedness Of Abstract Delay Differential Equations
B. Regularity And Asymptotics
C. Positivity For Delay Differential Equations
Notes
7. Semigroups For Volterra Equations
A. Mild And Classical Solutions
B. Optimal Regularity
C. Integro-Differential Equations
Notes
8. Semigroups For Control Theory
A. Controllability
B. Observability
C. Stabilizability And Detectability
D. Transfer Functions And Stability
Notes
9. Semigroups For Nonautonomons Cauchy Problems
Roland Schnaubelt
A. Cauchy Problems And Evolution Families
B. Evolution Semigroups
C. Perturbation Theory
D. Hyperbolic Evolution Families In The Parabolic Case
Notes
Ⅶ. A Brief History Of The Exponential Function
Tanja Hahn And Carla Perazzoli
1. A Bird's-Eye View
2. The Functional Equation
3. The Differential Equation
4. The Birth Of Semigroup Theory
Appendix
A. A Reminder Of Some Functional Analysis
B. A Reminder Of Some Operator Theory
C. Vector-Valued Integration
A. The Bochner Integral
B. The Fourier Transform
C. The Laplace Transform
Epilogue
Determinism: Scenes From The Interplay Between
Metaphysics And Mathematics
Gregor Nickel
1. The Mathematical Structure
2. Are Relativity, Quantum Mechanics, And Chaos Deterministic?
3. Determinism In Mathematical Science From Newton To Einstein
4. Developments In The Concept Of Object From Leibniz To Kant
5. Back To Some Roots Of Our Problem: Motion In History
6. Bibliography And Further Reading
References
List Of Symbols And Abbreviations
Index
出版时间:2013年版
丛编项: Springer数学研究生丛书
内容简介
《Springer数学研究生丛书:线性发展方程的单参数半群(英文版)》全面讲述了强连续线性算子的单参半群理论。《Springer数学研究生丛书:线性发展方程的单参数半群(英文版)》的最大特点是在常微分和偏分方程算子、衰退方程和volterra方程和控制理论中广泛应用。而且,书中也强调了一些哲学动机和历史背景。
目录
Preface
Prelude
Ⅰ. Linear Dynamical Systems
1. Cauchy's Functional Equation
2. Finite-Dimensional Systems: Matrix Semigroups
3. Uniformly Continuous Operator Semigroups
4. More Semigroups
A. Multiplication Semigroups On Co(Fi)
B. Multiplication Semigroups On Lp(Ω,Μ)
C. Translation Semigroups
5. Strongly Continuous Semigroups
A. Basic Properties
B. Standard Constructions
Notes
Ⅱ. Semigroups, Generators, And Resolvents
1. Generators Of Semigroups And Their Resolvents
2. Examples Revisited
A. Standard Constructions
B. Standard Examples
3. Hille-Yosida Generation Theorems
A. Generation Of Groups And Semigroups
B. Dissipative Operators And Contraction Semigroups
C. More Examples
4. Special Classes Of Semigroups
A. Analytic Semigroups
B. Differentiable Semigroups
C. Eventually Norm-Continuons Semigroups
D. Eventually Compact Semigroups
E. Examples
5. Interpolation And Extrapolation Spaces For Semigroups
Simon Brendle
A. Sobolev Towers
B. Favard And Abstract H61der Spaces
C. Fractional Powers
6. Well-Posedness For Evolution Equations
Notes
Ⅲ Perturbation And Approximation Of Semigroups
1. Bounded Perturbations
2. Perturbations Of Contractive And Analytic Semigroups
3. More Perturbations
A. The Perturbation Theorem Of Desch-Schappacher
B. Comparison Of Semigroups
C. The Perturbation Theorem Of Miyadera-Voigt
D. Additive Versus Multiplicative Perturbations
4. Trotter-Kato Approximation Theorems
A. A Technical Tool: Pseudoresolvents
B. The Approximation Theorems
C. Examples
5. Approximation Formulas
A. Chernoff Product Formula
B. Inversion Formulas
Notes
Ⅳ Spectral Theory For Semigroups And Generators
1. Spectral Theory For Closed Operators
2. Spectrum Of Semigroups And Generators
A. Basic Theory
B. Spectrum Of Induced Semigroups
C. Spectrum Of Periodic Semigroups
3. Spectral Mapping Theorems
A. Examples And Counterexamples
B. Spectral Mapping Theorems For Semigroups
C. Weak Spectral Mapping Theorem For Bounded Groups
4. Spectral Theory And Perturbation
Notes
Ⅴ. Asymptotics Of Semigroups
1. Stability And Hyperbolicity For Semigroups
A. Stability Concepts
B. Characterization Of Uniform Exponential Stability
C. Hyperbolic Decompositions
2. Compact Semigroups
A. General Semigroups
B. Weakly Compact Semigroups
C. Strongly Compact Semigroups
3. Eventually Compact And Quasi-Compact Semigroups
4. Mean Ergodic Semigroups
Notes
Ⅵ. Semigroups Everywhere
1. Semigroups For Population Equations
A. Semigroup Method For The Cell Equation
B. Intermezzo On Positive Semigroups
C. Asymptotics For The Cell Equation
Notes
2. Semigroups For The Transport Equation
A. Solution Semigroup For The Reactor Problem
B. Spectral And Asymptotic Behavior
Notes
3. Semigroups For Second-Order Cauchy Problems
A. The State Space X = Xb1 × X
B. The State Space X = X × X
C. The State Space X = Xc1 × X
Notes
4. Semigroups For Ordinary Differential Operators
M. Campiti, G. Metafune, D. Pallara, And S. Romanelli
A. Nondegenerate Operators On R And R+
B. Nondegenerate Operators On Bounded Intervals
C. Degenerate Operators
D. Analyticity Of Degenerate Semigroups
Notes
5. Semigroups For Partial Differential Operators
Abdelaziz Rhandi
A. Notation And Preliminary Results
B. Elliptic Differential Operators With Constant Coefficients
C. Elliptic Differential Operators With Variable Coefficients
Notes
6. Semigroups For Delay Differential Equations
A. Well-Posedness Of Abstract Delay Differential Equations
B. Regularity And Asymptotics
C. Positivity For Delay Differential Equations
Notes
7. Semigroups For Volterra Equations
A. Mild And Classical Solutions
B. Optimal Regularity
C. Integro-Differential Equations
Notes
8. Semigroups For Control Theory
A. Controllability
B. Observability
C. Stabilizability And Detectability
D. Transfer Functions And Stability
Notes
9. Semigroups For Nonautonomons Cauchy Problems
Roland Schnaubelt
A. Cauchy Problems And Evolution Families
B. Evolution Semigroups
C. Perturbation Theory
D. Hyperbolic Evolution Families In The Parabolic Case
Notes
Ⅶ. A Brief History Of The Exponential Function
Tanja Hahn And Carla Perazzoli
1. A Bird's-Eye View
2. The Functional Equation
3. The Differential Equation
4. The Birth Of Semigroup Theory
Appendix
A. A Reminder Of Some Functional Analysis
B. A Reminder Of Some Operator Theory
C. Vector-Valued Integration
A. The Bochner Integral
B. The Fourier Transform
C. The Laplace Transform
Epilogue
Determinism: Scenes From The Interplay Between
Metaphysics And Mathematics
Gregor Nickel
1. The Mathematical Structure
2. Are Relativity, Quantum Mechanics, And Chaos Deterministic?
3. Determinism In Mathematical Science From Newton To Einstein
4. Developments In The Concept Of Object From Leibniz To Kant
5. Back To Some Roots Of Our Problem: Motion In History
6. Bibliography And Further Reading
References
List Of Symbols And Abbreviations
Index
相关资料
- 张量分析概要及演算 [余天庆,熊睿 编著] 2014年版
- 中学数学数形结合解题方法与技巧 林涛,刘友莲编著 1992年版
- 玩转数学系列 中考数学总动员 谢学智,穆元舟编著 2016年版
- 中考新导引 数学 学生用书 王华鹏主编 2016年版
- 中考竞赛一本通 数学 七年级 上 人教版 丁保荣主编 2009年版
- 中考集锦 全程复习训练 数学 汤旭新本册主编 2007年版
- 章士藻数学教育文集 章士藻著 2009年版
- 幼儿数学思维启蒙 第三辑 神奇的魔法学校 探探数学工作室 编著 2020年版
- 幼儿数学思维启蒙 第二辑 一只猫,两个人?探探数学工作室编著 2020年版
- 怎样用复数法解中学数学题 高仕安,杜仁光著 1984年版